
AVOIDING PROJECT FAILURE: PUTTING PEOPLE
FIRST

Luke Barrett and Marc McNeill PHD.

ThoughtWorks Ltd.

9th Floor Berkshire House
168-173 High Holborn

London, WC1V 7AA

The consistent failure of software development projects to deliver what is
expected of them is a significant headache for businesses. It has been
claimed that only around a third of such projects can be regarded as
successful and that one of the primary reasons for this lack of success is poor
requirements management. Requirements are what drive any development
process, yet without a shared understanding between those who produce the
requirements (the business), those who turn them into tangible software (the
developers) and those who ultimately use the software (the end-users),
project failure becomes ever more likely. Using a case study this paper
discusses the use of participatory techniques and lightweight models to
describe and explore the problem and its potential solutions; applying highly
iterative, feedback-driven and people-centred techniques from the outset to
provide clarity in what is really required and so position teams for success.

Introduction

Software projects have a poor record of delivery. Whilst methodological issues have been
raised (Glass 2006), the Standish Group’s periodic CHAOS Report (Standish Group
International 2004) suggests that only around a third of such projects can actually claim
success. Defects in requirements are a major source of the defects that are later identified
during testing, and problems with requirements are among the top causes of project
failure (Schwaber 2006), indeed it has been estimated that 71% of projects fail due to
poor requirements management (Lindquist 2005). The Standish Group point to lack of
user input together with incomplete / changing requirements as the leading causes of
“challenged” projects. On the flip side they identify user involvement, executive
sponsorship and clear requirements as the most important in ensuring success.

This paper discusses the role of effective participation of the right stakeholders in
helping to drive project success. Focusing that participation around lightweight models
that are tangible and visible, and doing ‘just enough’ analysis, helps ensure buy-in from
the outset and increases the likelihood of successful project delivery.

Participation

Ultimately the vast majority of software solutions are about helping people (end-users) to
achieve their desired goals more effectively. The challenge for the software development

community is how to go about consistently delivering solutions that do just that.
Addressing this challenge begins with communication between three important groups:

1. The people paying for the solution (in commercial software development often referred

to as ‘the business’)
2. The people who are going to use the solution (the end-users)
3. The people who are going to implement the solution (the do-ers: project managers,

business analysts, quality analysts and software developers)

While the importance of including end-users in the development process seems obvious

(after all they are the people whose improved productivity, reduced error rates and
increased morale established the business case for the solution in the first place) all too
often they are missing from the equation. Despite the work of Norman and Nielsen (and
many others) over the last decade to raise the profile of end user involvement; despite
Standish's work pointing clearly to the importance of end-user involvement; and despite the
rise of the Web (and particularly Web 2.0 with its emphasis on rich user interactions not
previously associated with web applications), too few software development projects take a
user-centred design approach.

The increasing popularity of 'Agile' software development approaches (e.g. Martin

2002) provide an opportunity to address this. Agile approaches are inherently people-
centric being highly iterative and feedback-driven with that cycle of feedback being
remarkably short in comparison to traditional methods. Whereas a traditional 'waterfall'
approach to development might see a nine to twelve month gap between the business
specifying a requirement and seeing that implemented, in an agile project that might be as
little as a week. Such a rapid turn around of a requirement into functioning software allows
teams to 'fail fast' - that is obtain feedback from end-users at the point of need, not many
months after an implementation decision has been irrevocably (or at least expensively)
embedded in a design.

While the omission of input from end-users is one of the more obvious issues to

address, more challenging is ensuring the correct balance of representation from the
business. The goal is to achieve frequent input from those who have the best grasp of the
business need - this may mean input from multiple departments and certainly means input
from various levels of seniority. In addition there will be members of cross-cutting
functions who will also have necessary contributions to make (e.g. legal, security,
operations, etc.) although the frequency of their required input is likely to be less.

The point about seeking input from multiple levels of seniority for the key owning

business area (or areas) is worth restating. It is likely that on a day-to-day basis the business
area representative on the team will be someone of moderate seniority, that is they are
senior enough to have a good grasp of the business (and to be empowered to make
decisions concerning the solution up to a point) but junior enough that this is their day job
(or a good chunk of it). Again one leading cause of project failure is lack of executive
sponsorship so using the highly tangible output of the process (see below) at regular
showcases (weekly / twice weekly) to engage with, and extract feedback from, senior
business representatives is essential.

Lightweight models

With a multi-disciplinary team in place the challenge becomes to find a quick and clear
way for the team to generate and evolve potential solutions to the problem at hand. The
solutions must be captured in such a way that all three key constituencies can grasp them
and provide rapid feedback. It is here that simple lightweight models of the problem
domain and possible solutions to it come into their own, taking the following form:

1. Strategic: A simple prioritised list might be used to call out and agree key project

objectives with their associated metrics while a financial model might be used to
quantify the benefits case. It remains remarkable how many projects proceed with no
clear quantification of the benefits they may return.

2. Process: The high value, high frequency processes that the solution needs to support
are modelled. Typically these models explore how key user types achieve their highest
value goals. Again the models are lightweight ideally at a level of abstraction that
requires no more than seven to nine high-level steps. The aim here is to provide a
framework for the more detailed decomposition of the solution which will occur at the
next level down - that of implementation.

3. Implementation: The team is now distilling the output of the higher level models and

capturing them as business requirements of sufficient detail that the development team
can estimate the delivery effort. Importantly, at this point, the team’s understanding of
the written requirements should also be validated by the creation of low fidelity
prototypes of key usage scenarios. On the development side the need to provide
estimates should also prompt, as required, the creation of a proposed architectural
model and options for key technology choices.

The process by which these artefacts are evolved is of at least equal importance to

success. Experience suggests that, for a project of sensible scope, two to four weeks of
effort evolving the models, distilling the requirements, prioritising them (from a business
perspective) and estimating them (from an implementation perspective) will prepare a
team for release planning and then development.

The initial portion of the process (the first week or so) tends to be heavily workshop

focused. The team work together in short timeboxed sessions to collaboratively evolve
the models and requirements. Where possible updates occur ‘live’ in the workshop,
otherwise feedback is incorporated in dedicated consolidation time between sessions. As
an example, using marker pens and index cards, it is easy to model and refine a high-level
process ‘live’: cards can be re-ordered, torn up if necessary, replacements provided, new
ones added. Likewise high-level requirements captured on index cards have the same
flexibility.

As the process continues the intensity of workshops reduces (although a basic

heartbeat of workshops remains in place to ensure focus) allowing more time for basic
consolidation of the artefacts, ‘offline’ detailed analysis, workplace observation and
usability testing. Key to this processes ability to address the two themes of engagement
and clarity of requirements, is the way in which the multi-disciplinary team is intimately
involved in the evolution of the artefacts that represent their shared understanding. The

team see these artefacts taking shape in front of them based on their continuously
requested feedback. And that feedback is in response, not just to written requirements,
but to models (particularly the low-fidelity prototypes) that give them a really tangible
feel for what’s being discussed. Combine this with regular (e.g. weekly) presentations to
senior stakeholders and the approach provides a powerful mechanism for engaging
stakeholders across multiple areas and levels of seniority as well as for driving clarity
around any proposed solution.

Process in practice

A case study for this approach follows an investment bank developing a new Client
Relationship Management (CRM) tool. Four weeks were set aside for requirements
definition with a focused core team and subject matter experts identified when
appropriate. A dedicated project room was allocated. The project commenced with a
kick-off meeting where all stakeholders were invited. The executive sponsor introduced
the project, stated its importance and the need for people to make time in their diaries if
required. Borrowing from Hohmann (2006), innovation games were played to help the
team create a vision of the future, and what the risks to the project were. From this the
project objectives were distilled and an initial risk log drawn up. A second workshop,
(again with the whole team) identified high value high frequency user types and created
personas (Cooper and Reimann, 2007) for each of them. Each workshop lasted ninety
minutes, giving the team time to consolidate in the remainder.

The core team then walked through the ‘as-is’ business process, using index cards to

illustrate each process step. These were stuck on the wall. On a second wall the ‘to-be’
process was mapped out. Using cards allowed elements to be moved around or removed
and torn up if not necessary. Having them on the walls ensured visibility, and interest
from stakeholders. They could see progress being made and found it easy to comment
and make suggestions.

As the ‘to-be’ process stabilised (i.e. became less volatile following a number

feedback loops), a lo-fi prototype began to take shape. Again, this was modelled on
paper and key screens were again put on the walls. A technical architect was present
during all workshops and was able to begin to propose a technical solution to support the
process. By the end of the first week the team were able to present (‘showcase’) a
proposed ‘to-be’ process supported by pen and ink drawings of how the application may
look / behave. The stakeholders provided feedback and some radical changes were made
– with the low fidelity of the artefacts nobody felt precious to the work done and changes
were easily accommodated.

As the volatility of the design reduced, the lo-fi prototype was committed to

PowerPoint and a business analyst started to document requirements as stories in the
format “as a [user], I want to[requirement], so that[value]”. Guerrilla usability testing
(Nielsen, 1994) of the prototype was undertaken to refine the interaction design.
Technical “spikes”, rapid and time-boxed technical investigations of potential
functionality, were performed (such as a Google map – Microsoft Outlook calendar
‘mash-up’) to demonstrate feasibility and help with the estimation process.

By the third week the team had an extensive list of validated requirements that had
high level implementation estimates. These were printed on cards with values on them
(these values were arbitrary numbers for the exercise, reflecting an indicative magnitude
of effort but not expressed in real days or cost). The business were then invited to
prioritise the cards by “buying” features. This was done in four rounds simulating four
releases, with each release comprising of end to end functionality (rather than cherry
picking high value features without the supporting low-value functionality). This process
was iterative, indeed the planning continued through the development lifecycle.

At the end of the four weeks the stakeholders had a shared and common vision,

prioritised and estimated requirements, a release roadmap and a lo-fi prototype that
articulated how the application should look and behave. Four months later release one
development was complete with the application rolled out to the business two months
after that. During the development process changes and improvements were made based
upon the real software rather than the lo-fi prototype. Release one delivered functionality
that delivered immediate value to the business, with further features being delivered in
subsequent releases. As users had been involved in the design and usability had been
built into the process from the start, the tool was sufficiently intuitive to require no
training.

Conclusions

The seeds of success or failure are often sown early in the life of a project. By applying
highly iterative, feedback-driven and people-centred ways of working right from the get-
go businesses have a better chance of addressing the lack of engagement with key
stakeholders (senior management, end-users, etc.) and poorly defined requirements that,
time and again, lead to project failure.

References

Cooper, A. & Reimann, R., 2007, About Face 3: the essentials of interaction design.

Wiley Publishing.
Glass, R. L., 2006 The Standish report: does it really describe a software crisis? 49, 8,

15-16
Hohmann, L, 2006 Innovation Games. (Addison Wesley)
Lindquist, C, 2005 Fixing the Software Requirements Mess. CIO Magazine, November

issue
Martin, R. C., 2002 Agile Software Development, Principles, Patterns, and Practices.

Prentice Hall.
Nielsen J, 1994 Guerrilla HCI: Using Discount Usability Engineering to Penetrate the

Intimidation Barrier. http://www.useit.com/papers/guerrilla_hci.html
Schwaber, C, 2006 The Root Of The Problem: Poor Requirements. Forrester Research,

Inc.
Standish Group International, Chaos report: Chaos Chronicles.

http://www.standishgroup.com/

